
A tutorial on panel data analysis using
partially observed Markov processes via the

R package panelPomp

Carles Bretó1, Jesse Wheeler2, Aaron A. King2, and Edward L. Ionides2

1Universitat de València
2University of Michigan

September 5, 2024

Abstract

The R package panelPomp supports analysis of panel data via a general class of par-
tially observed Markov process models (PanelPOMP). This package tutorial describes
how the mathematical concept of a PanelPOMP is represented in the software and
demonstrates typical use-cases of panelPomp. Monte Carlo methods used for POMP
models require adaptation for PanelPOMP models due to the higher dimensional-
ity of panel data. The package takes advantage of recent advances for PanelPOMP,
including an iterated filtering algorithm, Monte Carlo adjusted profile methodology
and block optimization methodology to assist with the large parameter spaces that
can arise with panel models. In addition, tools for manipulation of models and data
are provided that take advantage of the panel structure.

1

1 Introduction

This tutorial describes a typical use-case of the panelPomp R package. Partially observed

Markov process (POMP) models—also known as state-space or hidden Markov models—

are useful mathematical tools for modeling non-linear dynamic systems. POMP models

describe a system via an unobserved dynamic model that has the Markov property, coupled

with a model for how observations are drawn from the latent process. Various software

packages provide platforms for performing statistical analysis of these systems using POMP

models (for instance, pomp (King et al., 2016), spatPomp (Asfaw et al., 2024), nimble

(Michaud et al., 2021), and mcstate (FitzJohn et al., 2020)). However, particular challenges

arise when modeling panel data via POMP models; these data arise when time series are

measured on a collection of independent units. While each unit may be modeled separately,

analyzing the data as a single collection can provide insights into the underlying dynamical

system that may not be obtained otherwise. For instance, each time series in the panel

may be too short to infer a complex dynamical model, so that inference on an underlying

model must combine information across the units. panelPomp is, to our knowledge, the

first software package specifically addressing these issues. The utility of panelPomp has

been demonstrated in several scientific applications (Ranjeva et al., 2017, 2019; Wale et al.,

2019; Domeyer et al., 2022; Lee et al., 2020).

The current version of panelPomp emphasizes simulation-based methods, also known

as plug-and-play methods (Bretó et al., 2009; He et al., 2010), or likelihood-free methods

(Marjoram et al., 2003; Sisson et al., 2007). Such methods are applicable to dynamic

models for which a simulator is available even when the transition densities are unavailable.

This class of flexible algorithms allow researchers to build their models based on scientific

reasoning rather than statistical convenience, typically at the expense of computational

efficiency. In the following sections, this tutorial demonstrates how the panelPomp package

can be used to model nonlinear dynamic systems using plug-and-play methodologies.

2 PanelPOMP models

Panel data is a collection of multiple time series datasets, each possibly multivariate on

its own, where each time series is associated with a unit; the units can represent spatial

locations, agents in a system, or other units for which data is collected over time. For

convenience of identifying units in the panel, we use numeric labels {1, 2, . . . , U}, which we

also write as 1 :U . Time series from each unit may be of different lengths, and so we define

Nu as the number of measurements collected on unit u. The observations are modeled as

a realization of a stochastic process Yu,1:Nu , observed at times tu,1 < tu,2 < · · · < tu,Nu . An

2

arbitrary realization of the observable process at time tu,n is denoted as yu,n, and the entire

collection of data is written as y∗u,1:Nu
= {y∗u,1, . . . , y∗u,Nu

}, using the asterisk to differentiate

the observed data from an arbitrary realization. The measurement process is assumed to

be dependent on a latent Markov process {Xu(t), tu,0 ≤ t ≤ tu,Nu} defined subsequent to

an initial time tu,0 ≤ tu,1. Requiring that {Xu(t)} and {Yu,i, i ̸= n} are independent of

Yu,n given Xu(tu,n), for each n ∈ 1 :Nu, completes the partially observed Markov process

(POMP) model structure for unit u. For a PanelPOMP we require additionally that all

units are modeled as independent.

The latent process can be modeled as either a discrete or continuous time process.

For the continuous time process, the value of the latent states at observation times is of

particular interest, so we write Xu,n = Xu(tu,n). We suppose that Xu,n and Yu,n take

values in arbitrary spaces Xu and Yu respectively, and that Xu,0:Nu and Yu,1:Nu have a joint

density written as fXu,0:NuYu,1:Nu
(xu,0:Nu , yu,1:Nu ; θ) with dependence on an unknown real-

valued parameter vector θ ∈ RD. The transition density fXu,n|Xu,n−1(xu,n |xu,n−1 ; θ) and

measurement density fYu,n|Xu,n(yu,n |xu,n ; θ) are permitted to depend arbitrarily on u and

n, allowing non-stationary models and the inclusion of covariate time series. The marginal

density of Yu,1:Nu at yu,1:Nu is fYu,1:Nu
(yu,1:Nu ; θ) and the likelihood function for unit u is

ℓu(θ) = fYu,1:Nu
(y∗u,1:Nu

; θ). The likelihood for the entire panel is ℓ(θ) =
∏U

u=1 ℓu(θ), and

any solution θ̂ = argmax ℓ(θ) is a maximum likelihood estimate (MLE). The log likelihood

is λ(θ) = log ℓ(θ).

We introduce a structure to the parameter space which is not part of the general def-

inition of a PanelPOMP model, but which is sufficiently common to deserve attention.

Suppose the parameter vector can be written as θ = (ϕ, ψ1, . . . , ψU), where

fXu,n|Xu,n−1(xu,n |xu,n−1 ; θ) = fXu,n|Xu,n−1(xu,n |xu,n−1 ;ϕ, ψu) (1)

fYu,n|Xu,n(yu,n |xu,n ; θ) = fYu,n|Xu,n(yu,n |xu,n ;ϕ, ψu) (2)

fXu,0(xu,0 ; θ) = fXu,0(xu,0 ;ϕ, ψu) (3)

Then, ψu is a vector of unit-specific parameters for unit u, and ϕ is a shared parameter

vector. We suppose ϕ ∈ RA and ψ ∈ RB, so the dimension of the parameter vector θ is

D = A + BU . The collection of unit-specific parameters can be considered as a B × U

matrix [ψb,u]. Determining which parameters should be modeled as unit-specific and which

should be shared is often itself an interesting scientific and statistical question.

The panelPomp class follows the mathematical structure described above, consisting of

a list of pomp objects together with a specification of shared and unit-specific parameters.

The pomp objects can be built using the pomp() constructor function from the pomp R

package (King et al., 2016). These objects are bound into a panelPomp object by the

3

Method Mathematical terminology
rprocess Simulate from fXu,n|Xu,n−1(xu,n |xu,n−1 ;ϕ, ψu)
dprocess Evaluate fXu,n|Xu,n−1(xu,n |xu,n−1 ;ϕ, ψu)
rmeasure Simulate from fYu,n|Xu,n(yu,n |xu,n ;ϕ, ψu)
dmeasure Evaluate fYu,n|Xu,n(yu,n |xu,n ;ϕ, ψu)
rinit Simulate from fXu,0(xu,0 ;ϕ, ψu)
rprior Simulate from the prior distribution π(θ)
dprior Evaluate the prior density π(θ)

Table 1: Basic model components for pomp units making up a panelPomp.

constructor function panelPomp(). The general framework does not insist that units of

a PanelPOMP share observation times or other model features—though any additional

shared structure may simplify the specification of the list of constituent pomp objects. The

specification of pomp models was discussed by King et al. (2016), and open-source examples

are available online for diverse applications including those described in Section 3. Briefly,

the model is specified by writing code to evaluate some or all of the following basic model

components described in Table 1.

Algorithms written for panelPomp may access these functions. An algorithm is defined

to be plug-and-play if it does not require dprocess. A pomp or panelPomp object does not

need to have all the basic computations defined. In particular, if employing plug-and-play

methodology there is no need to specify dprocess. Some algorithms may require model

components beyond those tabulated above. For example, the parameter trans function

defines parameter transformations which may be carried out to facilitate model fitting

by removing boundaries and/or shifting to a natural scale scale for exploring additive

perturbations. In addition, Bayesian methods may call rprior or dprior if these have

been defined.

A simple example of a PanelPOMP is a stochastic version of the discrete-time Gompertz

model for biological population growth (Winsor, 1932). This model supposes that the

density, Xu,n+1, of a population u at time n + 1 depends on the density, Xu,n, at time n

according to

Xu,n+1 = κ1−e−ru

u Xe−ru

u,n εu,n. (4)

In (4), κu is the carrying capacity of population u, ru is a positive parameter, and {εu,n, u ∈
1 :U, n ∈ 1 :Nu} are independent and identically-distributed lognormal random variables

with log εu,n ∼ Normal(0, σ2
G,u). We suppose the population is observed with lognormally

distributed errors,

log Yu,n ∼ Normal
(
logXu,n, τ

2
u

)
.

4

0
.6

1
.0

1
.4

Y

0
.6

1
.0

1
.4

1
.8

0 20 40 60 80 100

X

t

unit1

0
.6

1
.0

1
.4

Y

0
.8

1
.2

0 20 40 60 80 100

X

t

unit2

Figure 1: Separate plots produced by plot(gomp[1:2]).

This is accessible via

gomp <- panelGompertz(N = 100, U = 50)

Here, the number of units is length(gomp)=50. panelPomp uses S4 classes (Chambers,

1998; Genolini, 2008) with gomp having the base class panelPomp. Because data are a key

component of PanelPOMP models, the panelGompertz function first creates a PanelPOMP

model, and then generates a dataset by simulating from that model using a reproducible

seed specified by the seed argument to the function.

Commonly, the first thing to do with a new object is to plot it, and Fig. 1 demonstrates

the panelPomp plot method applied after subsetting gomp. The units of a panelPomp do

not necessarily share the same variables, so in general a sequence of separate plots is all

that can be offered. It may happen that the units can meaningfully be plotted on the same

axis, and that can be achieved by coercing the panelPomp object to a pompList and using

the plot method for that class (Fig. 2). A third option is to export the panelPomp object

via as(gomp,"data.frame") and work this this to produce customized plots.

A basic operation is simulation. We can generate another simulation with the same

parameter values:

gomp2 <- simulate(gomp)

We can simulate from the same model at new parameter values by giving additional

arguments to simulate. There are two different representations of parameters within

5

0
.5

1
.0

1
.5

2
.0

Y

0
.5

1
.0

1
.5

2
.0

2
.5

0 20 40 60 80 100

X

t

Figure 2: Overlayed time series plot using plot(as(gomp,’pompList’)).

6

panelPomp which are convenient in different situations. The unit-specific parameters are

naturally represented as a matrix, set with the specific argument in the panelPomp con-

structor function, with a column for each units and a row for each parameter. Similarly,

the shared parameters are a named vector that can be set using the shared argument.

Alternatively, we can consider the parameters as a single named vector, with a naming

convention that "beta[unit7]" is the name of the unit-specific parameter beta for unit

u = 7. Model parameters can be extracted and set in this vector-format using the functions

coef() and coef()<-, respectively. Alternatively, unit-specific and shared parameters can

be extracted using functions specific() and shared(), and modified using the equivalent

setter functions specific()<- and shared()<-. For example, all shared and a subset of

unit-specific parameters (from units 1–3) can be extracted in vector format via

coef(gomp[1:3])

r sigma K[unit1] tau[unit1] X.0[unit1] K[unit2] tau[unit2]

0.1 0.1 1.0 0.1 1.0 1.0 0.1

X.0[unit2] K[unit3] tau[unit3] X.0[unit3]

1.0 1.0 0.1 1.0

or in a list format using the format = ‘list’ argument

coef(gomp[1:3], format = ’list’)

$shared

r sigma

0.1 0.1

##

$specific

unit1 unit2 unit3

K 1.0 1.0 1.0

tau 0.1 0.1 0.1

X.0 1.0 1.0 1.0

The functions toParamList and toParamVec facilitate movement between the vector and

list formats

toParamList(coef(gomp[1:3]))

$shared

7

r sigma

0.1 0.1

##

$specific

unit

param unit1 unit2 unit3

K 1.0 1.0 1.0

tau 0.1 0.1 0.1

X.0 1.0 1.0 1.0

panelPomp seeks to avoid unnecessary duplication with pomp. Thus, panelPomp re-

quires that pomp is loaded and builds on existing functionality of pomp where possible. In

particular, a list of pomp objects for each unit can be extracted from a panelPomp object

via

as(panelPompObject,"list")

Some methods in the pomp package take advantage of a pompList class which is defined

as a list of pomp objects. These methods can be accessed via

as(panelPompObject,"pompList")

Many critical issues in computational performance of the basic model components for

panelPomp, and utilities for assisting with the user specification of the model, have already

received extensive development and testing in the context of pomp. All the facilities for

constructing POMP models in pomp are available for constructing the models for each

unit in panelPomp. This article avoids duplication by referring the reader to King et al.

(2016) and the pomp documentation for detailed discussion of constructing pomp objects. In

Section 3, we identify some case studies that provide useful code for scientific applications

of panelPomp. In Section 4, we proceed to demonstrate inference for panelPomp objects,

emphasizing methodological issues arising due to the specific requirements of panel data,

in the context of a toy example.

3 Implementing mechanistic models: case studies

Developing mechanistic statistical models for new scientific applications requires identifying

the essential variables and their functional relationships, and obtaining a satisfactory de-

scription of stochasticity in both the measurement process and the system dynamics. This

8

challenging but valuable exercise is assisted by simulation-based software that permits im-

plementation of a general class of models. Once a suitable model is found, it provides

a testable benchmark for subsequent investigations of the system under study and other

comparable systems. Published models and methods, equipped with data and reproducible

source code, are essential to maintain this progressive development.

Since each unit in a panelPomp is itself a pomp, we refer to King et al. (2016) for full

details of how these are specified, and we focus on the new issues arising in panelPomp.

Recall from Section 2 that a panelPomp is constructed from the list of constituent pomp

models together with a collection of shared and unit-specific parameters. A unit-specific

parameter named theta should be called theta in each constituent pomp. Thus, the value

theta[unit7] specific to unit 7 is just passed as theta when required by the pomp model

representing this unit.

Existing examples of panelPomp analysis have primarily concerned infectious disease

dynamics, a topic that has motivated many advances in inference for partially observed

stochastic dynamic systems. We discuss five of these below. In addition, the close relation-

ship between panelPomp and pomp objects means that panelPomp model constructions can

borrow from the considerable existing resources for pomp. The remaining examples give

some applications in other domains which have been carried out using pomp models but

have extensions to panelPomp situations.

1. Sexual contacts: behavioral heterogeneity within and between individuals. Romero-

Severson et al. (2015) developed a PanelPOMP model to investigate a longitudi-

nal prospective survey of sexual contacts, quantifying the roles of behavioral dif-

ferences between individuals and differences within an individual over time. The

contacts() function in panelPomp generates one of the models and datasets stud-

ied in this paper. The source code to generate this panelPomp object is at https:

//github.com/cbreto/panelPomp.

2. Recurrent infection with HPV. Ranjeva et al. (2017) developed a PanelPOMP model

to study the strain dynamics of a longitudinal prospective serological survey of human

papillomavirus (HPV). Their panelPomp code is available at https://github.com/

cobeylab/HPV-model.

3. Polio: asymptomatic infection and local extinction. Martinez-Bakker et al. (2015)

developed a POMP model for polio transmission to investigate the pre-vaccination

epidemics in USA, fitting all parameters separately for each state. Bretó et al. (2020)

found additional precision in inferences when the states are combined into a Pan-

elPOMP with some shared parameters. The polio() function in panelPomp gener-

ates this model, and the source code is at https://github.com/cbreto/panelPomp.

9

4. Age-specific differences in the dynamics of protective immunity to influenza. Ran-

jeva et al. (2019) developed a PanelPOMP model to interpret longitudinal study of

serological measurements on human influenza immunity. The source code for their

panelPompmodel is at https://github.com/cobeylab/Influenza-immune-dynamics.

5. The dynamic struggle between malaria and the immune system. Wale et al. (2019)

developed a PanelPOMP model to investigate the dynamics of the immune response

to malaria, based on flow cytometry time series for a panel of mice under varying

treatments. Their panelPomp source code and data are available at https://doi.

org/10.5061/dryad.nk98sf7pk.

6. Ecological predator-prey dynamics: consumptive and non-consumptive effects. Marino

et al. (2019) developed a stochastic seasonal predator-prey POMP model to investi-

gate the relationship between an abundant zooplankton species, Daphnia mendotae,

and its predator, Bythotrephes longimanus, in Lake Michigan. The source code for

the pomp analysis is available at https://doi.org/10.5061/dryad.bh688ft.

7. Stochastic volatility and financial leverage. Bretó (2014) demonstrated the appli-

cability of plug-and-play methods within pomp to investigate stochastic volatility in

finance using a POMP model for a single index.

Many other POMP models implemented using pomp are presented at https://kingaa.

github.io/pomp/biblio.html.

4 Methodology for PanelPOMP models

All POMP methods can in principle be extended to PanelPOMPs since a PanelPOMP can

be written as a POMP. Three different ways to represent a PanelPOMP as a POMP were

identified by Romero-Severson et al. (2015): (i) the panels can be concatenated temporally

into a long time series; (ii) the panels can be adjoined to form a high-dimensional POMP

with a latent state comprised of a vector of latent states for each unit; (iii) time in the

POMP representation can correspond to unit, u, with a vector valued state representing

the full process for this unit. The existence of these representations does not necessarily

imply that POMP methods will be computationally feasible on the resulting PanelPOMP.

In particular, sequential Monte Carlo algorithms can have prohibitive scaling difficulties

with the high dimensional latent states that can be involved with representations (ii) and

(iii).

Here, we focus on describing and demonstrating the plug-and-play likelihood-based

inference workflow used in the scienfic examples of Section 3. This approach builds on

10

likelihood evaluation via the particle filter using pfilter() and likelihood maximization

via iterated filtering using mif2(). These algorithms can be formally justified in terms of

representation (i) above (Bretó et al., 2020), though the numerical implementation does

not in practice have to explicitly construct the concatenation of the panelPomp object into

a pomp object.

4.1 Log likelihood evaluation via panel particle filtering

The particle filter, also known as sequential Monte Carlo, is a standard tool for log likelihood

evaluation on non-Gaussian POMP models. The log likelihood function is a central com-

ponent of Bayesian and frequentist inference. Due to the dynamic independence assumed

between units, particle filtering can be carried out separately on each unit. The pfilter

method for panelPomp objects is therefore a direct extension of the pfilter method for

pomp objects from the pomp package. Repeating pfilter is advisable to reduce the Monte

Carlo error on the log likelihood evaluation and to quantify this error. The following

code carries out replicated evaluations of the log likelihood of gomp, taking advantage of

multicore computation. The Gompertz model is a convenient for testing methodology for

nonlinear non-Gaussian models since it has a logarithmic transformation to a linear Gaus-

sian process and therefore the exact likelihood is computable by the Kalman filter (King

et al., 2016).

pf_results <- foreach(i=1:10) %dopar% pfilter(gomp,

Np=switch(run_level,10,200,1000))

This took 0.05 minutes using 4 cores, resulting in a list of objects of class pfilterd.ppomp.

We can use logLik to extract the Monte Carlo likelihood esimate λ[i] for each replicate i,

and unitlogLik to extract the vector of component Monte Carlo likelihood esimates λ
[i]
u

for each unit u = 1, . . . , U , where λ[i] =
∑U

u=1 λ
[i]
u . For a POMP model, replicated particle

filter likelihood evaluations are usually averaged on the natural scale, rather than the log

scale, to take advantage of the unbiasedness of the particle filter likelihood estimate. Thus,

we have

λ̂1 = log
1

I

I∑
i=1

exp

{
U∑

u=1

λ[i]u

}
which can be implemented as

lambda_1 <- logmeanexp(sapply(pf_results,logLik),se=TRUE)

giving λ̂1 = 2066.5 with a jack-knife standard error of 0.7. Taking advantage of the

independence of the units in the panel structure, Bretó et al. (2020) showed it is preferable

11

to average the replicates of marginal likelihood for each unit before taking a product over

units. This corresponds to

λ̂2 = log
U∏

u=1

1

I

I∑
i=1

exp
{
λ̂[i]u

}
which can be implemented as

lambda_2 <- panel_logmeanexp(sapply(pf_results,unitlogLik),

MARGIN=1,se=TRUE)

giving λ̂2 = 2067.9 with a jack-knife standard error of 1.1. For this model, a Kalman

filter likelihood evaluation gives an exact answer, λ = 2068.2.

4.2 Maximum likelihood estimation via Panel Iterated Filtering

Iterated filtering algorithms carry out repeated particle filtering operations on an extended

version of the model that includes time-varying perturbations of parameters. At each

iteration, the magnitude of the perturbations is decreased, and in a suitable limit the

algorithm approaches a local maximum of the likelihood function. The IF2 iterated filtering

algorithm (Ionides et al., 2015) has been used for likelihood-based inference on various

POMP models arising in epidemiology and ecology (reviewed by Bretó, 2018), superseding

the previous IF1 algorithm of Ionides et al. (2006). IF2 is implemented in pomp as the mif2

method for class pomp. A panel iterated filtering (PIF) algorithm, extending IF2 to panel

data, was developed by Bretó et al. (2020). An implementation of PIF in panelPomp is

provided by the mif2method for class panelPomp, following the pseudocode in Algorithm 1.

The pseudocode in Algorithm 1 sometimes omits explicit specification of ranges over which

variables are to be computed when this is apparent from the context: it is understood

that j takes values in 1 : J , a in 1 :A and b in 1 :B. The N [0, 1] notation corresponds to

the construction of independent standard normal random variables, leading to to Gaussian

perturbations of parameters on a transformed scale. These perturbations could follow an

arbitrary distribution within the theoretical frameworks of IF2 and PIF.

At a conceptual level, the PIF algorithm has an evolutionary analogy: successive itera-

tions mutate parameters and select among the fittest outcomes measured by Monte Carlo

likelihood evaluation. The theory allows considerable flexibility in how the parameters

are perturbed, but Gaussian perturbations on an appropriate scale are typically adequate.

Most often, the perturbation parameters σΦ
a,n and σΨ

b,u,n in Algorithm 1 will not depend on

n. For parameters set to have uncertainty on a unit scale, the value 0.02 demonstrated here

has been commonly used. The help documentation on the rw sd argument gives instruction

12

Algorithm 1: mif2
(
pp, Nmif =M, Np = J, start = (ϕ0

a, ψ
0
b,u),

rw sd = (σΦ
a,n, σ

Ψ
b,u,n), cooling.factor.50 = ρ50

)
, where pp is a panelPomp

object containing data and defined rprocess, dmeasure, rinit and partrans

components.

input: Data, y∗u,n, u in 1 :U , n in 1 :N
Simulator of initial density, fXu,0(xu,0 ;ϕ, ψu)
Simulator of transition density, fXu,n|Xu,n−1(xu,n |xu,n−1 ;ϕ, ψu)
Evaluator of measurement density, fYu,n|Xu,n(yu,n |xu,n ;ϕ, ψu)
Number of particles, J , and number of iterations, M
Starting shared parameter swarm, Φ0

a,j = ϕ0
a, a in 1 :A, j in 1 :J

Starting unit-specific parameter swarm, Ψ0
b,u,j = ψ0

b,u, b in 1 :B, j in 1 :J
Random walk intensities, σΦ

a,n and σΨ
b,u,n

Parameter transformations, hΦa and hΨb , with inverses
(
hΦa

)−1
and

(
hΨb

)−1

output: Final parameter swarm, ΦM
a,j and ΨM

b,u,j

For m in 1 :M
Φm

a,0,j = Φm−1
a,j

For u in 1 :U

ΦF,m
a,u,0,j =

(
hΦa

)−1
(
hΦa

(
Φm

a,u−1,j

)
+ ρmσΦ

a,0Z
Φ,m
a,u,0,j

)
for ZΦ,m

a,u,0,j ∼ N [0, 1]

ΨF,m
b,u,0,j =

(
hΨb

)−1
(
hΨb

(
Ψm−1

b,u,j

)
+ ρmσΨ

b,u,0Z
Ψ,m
b,u,0,j

)
for ZΨ,m

b,u,0,j ∼ N [0, 1]

XF,m
u,0,j ∼ fXu,0

(
xu,0 ; ΦF,m

a,u,0,j,Ψ
F,m
b,u,0,j

)
For n in 1 :Nu

ΦP,m
a,u,n,j =

(
hΦa

)−1
(
hΦa

(
ΦF,m

a,u,n−1,j

)
+ ρmσΦ

a,nZ
Φ,m
a,u,n,j

)
for ZΦ,m

a,u,n,j ∼ N [0, 1]

ΨP,m
b,u,n,j =

(
hΨb

)−1
(
hΨb

(
ΨF,m

b,u,n−1,j

)
+ ρmσΨ

b,u,nZ
Ψ,m
b,u,n,j

)
for ZΨ,m

b,u,n,j ∼ N [0, 1]

XP,m
u,n,j ∼ fXu,n|Xu,n−1

(
xu,n

∣∣ XF,m
u,n−1,j ; ΦP,m

a,u,n,j ,Ψ
P,m
b,u,n,j

)
wm

u,n,j = fYu,n|Xu,n

(
y∗u,n

∣∣ XP,m
u,n,j ; ΦP,m

a,u,n,j ,Ψ
P,m
b,u,n,j

)
Draw k1:J with P(kj = i) = wm

u,n,i

/∑J
q=1w

m
u,n,q

ΦF,m
a,u,n,j = ΦP,m

a,u,n,kj
, ΨF,m

b,u,n,j = ΨP,m
b,u,n,kj

and XF,m
u,n,j = XP,m

u,n,kj

End For

Φm
a,u,j = ΦF,m

a,u,Nu,j
and Ψm

b,u,j = ΨF,m
b,u,Nu,j

End For
Φm

a,j = Φm
a,U,j

End For

on using additional structure should it become necessary.

For positive parameters, a logarithmic transform can achieve both tasks of removing the

boundary and placing uncertainty on a unit scale. For the panel Gompertz model, all the

parameters are non-negative valued, and so the panelGompertz() code calls panelPomp

with an argument

13

partrans=parameter_trans(log=c("K","r","sigma","tau","X.0"))

Inference methodology can call partrans(...,dir="toEst") to work with parameters

on a suitable scale, usually one where additive variation is meaningful. The methodology

can revert to the original parameterization, presumably chosen to be scientifically conve-

nient or meaningful, using partrans(...,dir="fromEst"). Thus, a user who does not

have to look ‘under the hood’ never has to be directly concerned with parameters on the

transformed scale, beyond assigning the transformation.

For Monte Carlo maximization, replication from diverse starting points is recommended.

We demonstrate such a maximization search on gomp. For simplicity, we fix Ku = 1 and

the initial condition Xu,0 = 1, maximizing over two shared parameters, r and σ, and one

unit-specific parameter τu. To define the diverse starting points, we make uniform draws

from a specified box. We are not promising that the search will stay within this box, and

indeed we should be alert to the possibility that the data lead us elsewhere. However,

if replicated searches started from this box reliably reach a consensus, we claim we have

carefully investigated this part of parameter space. A larger box leads to greater confidence

that the relevant part of the parameter space has been searched, at the expense of requiring

additional work. The runif panel design function constructs a matrix of random draws

from the box.

starts <- runif_panel_design(

lower = c(’r’ = 0.05, ’sigma’ = 0.05, ’tau’ = 0.05, ’K’ = 1, ’X.0’ = 1),

upper = c(’r’ = 0.2, ’sigma’ = 0.2, ’tau’ = 0.2, ’K’ = 1, ’X.0’ = 1),

specific_names = c(’K’, ’tau’, ’X.0’),

unit_names = names(gomp),

nseq=switch(run_level,2,4,6)

)

We then carry out a search from each starting point:

mif_results <- foreach(start=iter(starts,"row")) %dopar% {
mif2(gomp, start=unlist(start),

Nmif = switch(run_level,2,20,150),

Np = switch(run_level,10,500,1500),

cooling.fraction.50=0.5,

cooling.type="geometric",

transform=TRUE,

rw.sd=rw_sd(r=0.02,sigma=0.02,tau=0.02)

14

)

}

This took 15.0 minutes using 4 cores, producing a list of objects of class mifd.ppomp.

The algorithmic parameters are very similar to those of the mif2method for class pomp. The

perturbations, determined by the rw sd argument, may be a list giving separate instructions

for each unit. When only one specification for a unit-specific parameter is given (as we do

for Ku here) the same perturbation is used for all units.

We can check on convergence of the searches, and possibly diagnose improvements in

the choices of algorithmic parameters, by consulting trace plots of the searches available

via the traces method for class mifd.ppomp. This follows recommendations by (Ionides

et al., 2006) and (King et al., 2016).

An issue characteristic of PanelPOMP models is using the panel structure to facilitate

the large number of parameters arising when unit-specific parameters are specified for a

large number of units. For a fixed value of the shared parameters, the likelihood of the unit-

specific parameters factorizes over the units. The factorized likelihood can be maximized

separately over each unit, replacing a challenging high-dimensional problem with many

relatively routine low-dimensional problems. This suggests a block maximization strategy

where unit-specific parameters for each unit are maximized as a block. Bretó et al. (2020)

used a simple block strategy where a global search over all parameters is followed by a

block maximization over units for unit-specific parameters. We demonstrate this here,

refining each of the maximization replicates above. The following function carries out

a maximization search of unit-specific parameters for a single unit. The call to mif2

takes advantage of argument recycling: all algorithmic parameters are re-used from the

construction of mifd gomp except for the respecified random walk standard deviations

which ensures that only the unit-specific parameters are perturbed.

mif_unit <- function(unit,mifd_gomp,reps=switch(run_level,2,4,6)){
unit_gomp <- unit_objects(mifd_gomp)[[unit]]

mifs <- replicate(n=reps,mif2(unit_gomp,rw.sd=rw_sd(tau=0.02)))

best <- which.max(sapply(mifs,logLik))

coef(mifs[[best]])["tau"]

}

Now we apply this block maximization to find updated unit-specific parameters for each

replicate, and we insert these back into the panelPomp

15

mif_block <- foreach(mf=mif_results) %dopar% {
mf@specific["tau",] <- sapply(1:length(mf),mif_unit,mifd_gomp=mf)

mf

}

This took 0.8 minutes.

We expect Monte Carlo estimates of the maximized log likelihood functions to fall

below the actual (usually unknown) value. This is in part because imperfect maximization

can only reduce the maximized likelihood, and in part a consequence of Jensen’s inequality

applied to the likelihood evaluation: the unbiased SMC likelihood evaluation has a negative

bias on estimation of the log likelihood.

4.3 Monte Carlo profile likelihood

The profile likelihood function is constructed by fixing one focal parameter at a range of

values and then maximizing the likelihood over all other parameters for each value of the

focal parameter. Constructing a profile likelihood function has several practical advantages.

1. Evaluations at neighboring values of the focal parameter provide additional Monte

Carlo replication. Typically, the true profile log likelihood is smooth, and asymp-

totically close to quadratic under regularity conditions, so deviations from a smooth

fitted line can be interpreted as Monte Carlo error.

2. Large-scale features of the profile likelihood reveal a region of the parameter space

outside which the model provides a poor explanation of the data.

3. Co-plots, showing how the values of other maximized parameters vary along the

profile, may provide insights into parameter tradeoffs implied by the data.

4. The smoothed Monte Carlo profile log likelihood can be used to construct an ap-

proximate 95% confidence interval. The resulting confidence interval can be properly

adjusted to accommodate both statistical and Monte Carlo uncertainty (Ionides et al.,

2017).

Once we have code for maximizing the likelihood, only minor adaptation is needed to

carry out the maximizations for a profile. The runif panel design generating the starting

values is replaced by a call to profile design, which assigns the focal parameter to a grid

of values and randomizes the remaining parameters. The random walk standard deviation

for the focal parameter is unassigned, which leads it to be set to zero and therefore the

16

parameter remains fixed during the maximization process. The following code combines

the joint and block maximizations developed above.

Names of the estimated parameters

estimated <- c(

"r", "sigma", paste0("tau[unit", 1:length(gomp), "]")

)

Names of the fixed parameters (not estimated)

fixed <- names(coef(gomp))[!names(coef(gomp)) %in% estimated]

profile_starts <- profile_design(

r = seq(0.05, 0.2, length = switch(run_level, 10, 10, 20)),

lower = c(coef(gomp)[estimated] / 2, coef(gomp)[fixed])[-1],

upper = c(coef(gomp)[estimated] * 2, coef(gomp)[fixed])[-1],

nprof = 2, type = "runif"

)

profile_results <- foreach(start=iter(profile_starts,"row")) %dopar% {
mf <- mif2(

mif_results[[1]],

start = unlist(start),

rw.sd = rw_sd(sigma = 0.02, tau = 0.02))

mf@specific["tau",] <- sapply(1:length(mf), mif_unit,mifd_gomp = mf)

mf

}

The profile searches took 68.2 minutes. However, we are not quite done gathering the

results for the profile. The perturbed filtering carried out by mif2 leads to an approximate

likelihood evaluation, but for our main results it is better to re-evaluate the likelihood

without perturbations. Also, replication is recommended to reduce and quantify Monte

Carlo error. We do this, and tabulate the results.

profile_table <- foreach(mf=profile_results,.combine=rbind) %dopar% {
LL <- replicate(switch(run_level,2,5,10),

logLik(pfilter(mf,Np=switch(run_level,10,500,2500)))

)

LL <- logmeanexp(LL,se=TRUE)

17

data.frame(t(coef(mf)),loglik=LL[1],loglik.se=LL[2])

}

The likelihood evaluations took 3.2 minutes. It is appropriate to spend comparable time

evaluating the likelihood to the time spent maximizing it: a high quality maximization

without high quality likelihood evaluation is hard to interpret, whereas good evaluations of

the likelihood in a vicinity of the maximum can inform about the shape of the likelihood

surface in this region which may be as relevant as knowing the exact maximum.

The Monte Carlo adjusted profile (MCAP) approach of Ionides et al. (2017) is im-

plemented by the mcap() function in pomp. This function constructs a smoothed profile

likelihood, by application of the loess smoother. It computes a local quadratic approx-

imation that is used to derive an extension to the classical profile likelihood confidence

interval that makes allowance for Monte Carlo error in the calculation of the profile points.

Theoretically, an MCAP procedure can obtain statistically efficient confidence intervals

even when the Monte Carlo error in the profile likelihood is asymptotically growing and

unbounded (Ning et al., 2021). Log likelihood evaluation has negative bias, as a conse-

quence of Jensen’s inequality for an unbiased likelihood estimate. This bias produces a

vertical shift in the estimated profile, which fortunately does not have consequence for the

confidence interval if the bias is slowly varying.

The profile points evaluated above, and stored in profile table, can be used to com-

pute a 95% MCAP confidence interval as follows:

gomp_mcap <- pomp::mcap(logLik=profile_table$loglik,

parameter=profile_table$r,

level=0.95)

The construction of the confidence interval is best shown by a plot of the smoothed

profile likelihood (Fig. 3). In this toy example, the exact likelihood can be calculated using

the Kalman filter, and this is carried out by the panelGompertzLikelihood function. The

likelihood can then be maximized using a general-purpose optimization procedure such

as optim() in R. With large numbers of parameters, and no guarantee of convexity, this

numerical optimization is not entirely routine. One might consider a block optimization

strategy, but here we carry out a simple global search, which took 15.5 minutes to compute

the profile likelihood, once parallelized. The deterministic search is also not entirely smooth,

and so we apply MCAP as for the Monte Carlo search. Both deterministic and Monte Carlo

optimizations can benefit from a block optimization strategy which alternates between

shared and unit-specific parameters (Bretó et al., 2020). Such algorithms can be built

18

0.05 0.10 0.15 0.20

2
0

2
0

2
0

4
0

2
0

6
0

2
0

8
0

p
ro
fi
le

 l
o

g
 l
ik

e
li
h

o
o

d

r

Figure 3: The Monte Carlo adjusted profile confidence interval (solid red lines, evaluation
points shown as circles). Construction using deterministic optimization of the likelihood
calculated by the Kalman filter (dashed lines, evaluation points show as squares).

using the panelPomp functions we have demonstrated, and they will be incorporated into

the package once they have been more extensively researched.

5 Conclusion

The analysis demonstrated in Section 4 gives one approach to plug-and-play inference for

PanelPOMP models, but the scope of panelPomp is far from limited to this approach.

panelPomp is a general and extensible framework which encourages the development of

additional functionality. The panelPomp class and the corresponding workhorse functions

provide an applications interface available to other future methodologies. In this sense,

panelPomp provides an environment for sharing and developing PanelPOMP models and

methods, both via future contributions to the panelPomp package and via open source

applications using panelPomp. This framework will facilitate comparison of new future

methodology with existing methodology.

Likelihood evaluation and maximization was used to construct confidence intervals in

Section 4. These calculations also provide a foundation for other techniques of likelihood-

based inference, such as likelihood ratio hypothesis tests and model selection via Akaike’s

information criterion (AIC). The examples discussed in Section 3 provide case studies in

the use of these methods for scientific work.

19

Data analysis using large data sets or complex models may require considerable com-

puting time. Simulation-based methodology is necessarily computationally intensive, and

access to a cluster computing environment extends the size of problems that can be tackled.

The workflow in Section 4 has a simple parallel structure that can readily take advantage of

additional resources. Embarrassingly parallel computations, such as computing the profile

likelihood function at a grid of points, or replicated evaluations of the likelihood function,

can be parallelized using the foreach package.

Panel data is widely available: for many experimental and observational systems it is

more practical to collect short time series on many units than to obtain one long time

series. For time series data, fitting mechanistic models specified as partially observed

Markov processes has found numerous applications for formulating and answering scientific

hypotheses. (Bretó et al., 2009; King et al., 2016). However, there are remarkably few

examples in the literature fitting mechanistic nonlinear non-Gaussian partially observed

stochastic dynamic models to panel data. The panelPomp package offers opportunities to

remedy this situation.

The source code for panelPomp is at https://github.com/cbreto/panelPomp. Unit

tests that cover 100% of the code are provided at https://github.com/cbreto/panelPomp/

tests, and these tests also provide useful examples of calls to the functions within panelPomp.

The source code for this article is at https://github.com/cbreto/panelPomp/vignettes/

articles/package_tutorial.

Acknowledgments

The results in this paper were obtained using R 4.4.1 with panelPomp 1.3.0 and pkg-

pomp 5.9.0.0. This work was supported by National Science Foundation grants DMS-

1761603 and DMS-1646108, National Institutes of Health grants 1-U54-GM111274 and

1-U01-GM110712, and by MCIN/AEI/10.13039/501100011033 grants PID2020-116242RB-

I00 and PID2023-152348NB-I00

References

Asfaw, K., Park, J., King, A. A., and Ionides, E. L. (2024), “A tutorial on spa-

tiotemporal partially observed Markov process models via the R package spatPomp,”

arXiv:2101.01157 .

Bretó, C. (2014), “On idiosyncratic stochasticity of financial leverage effects,” Statistics &

Probability Letters , 91, 20–26.

20

Bretó, C. (2018), “Modeling and inference for infectious disease dynamics: a likelihood-

based approach,” Statistical Science, 33, 57–69.

Bretó, C., He, D., Ionides, E. L., and King, A. A. (2009), “Time series analysis via mech-

anistic models,” Annals of Applied Statistics , 3, 319–348.

Bretó, C., Ionides, E. L., and King, A. A. (2020), “Panel data analysis via mechanistic

models,” Journal of the American Statistical Association, 115, 1178–1188, URL https:

//doi.org/10.1080/01621459.2019.1604367.

Chambers, J. (1998), Programming with Data, New York: Springer-Verlag.

Domeyer, J. E., Lee, J. D., Toyoda, H., Mehler, B., and Reimer, B. (2022), “Driver-

pedestrian perceptual models demonstrate coupling: implications for vehicle automa-

tion,” IEEE Transactions on Human-Machine Systems , 52, 557–566.

FitzJohn, R. G., Knock, E. S., Whittles, L. K., Perez-Guzman, P. N., Bhatia, S., Guntoro,

F., Watson, O. J., Whittaker, C., Ferguson, N. M., Cori, A., et al. (2020), “Reproducible

parallel inference and simulation of stochastic state space models using odin, dust, and

mcstate,” Wellcome Open Research, 5, 288.

Genolini, C. (2008), “A (Not So) Short Introduction to S4,” R Founda-

tion for Statistical Computing, URL https://CRAN.R-project.org/doc/contrib/

Genolini-S4tutorialV0-5en.pdf.

He, D., Ionides, E. L., and King, A. A. (2010), “Plug-and-play inference for disease dy-

namics: Measles in large and small towns as a case study,” Journal of the Royal Society

Interface, 7, 271–283.

Ionides, E. L., Bretó, C., and King, A. A. (2006), “Inference for nonlinear dynamical

systems,” Proceedings of the National Academy of Sciences of the USA, 103, 18438–

18443.

Ionides, E. L., Breto, C., Park, J., Smith, R. A., and King, A. A. (2017), “Monte Carlo

profile confidence intervals for dynamic systems,” Journal of the Royal Society Interface,

14, 1–10.

Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S., and King, A. A. (2015), “Inference for

dynamic and latent variable models via iterated, perturbed Bayes maps,” Proceedings of

the National Academy of Sciences of the USA, 112, 719–724.

21

King, A. A., Nguyen, D., and Ionides, E. L. (2016), “Statistical inference for partially

observed Markov processes via the R package pomp,” Journal of Statistical Software, 69,

1–43.

Lee, E. C., Chao, D. L., Lemaitre, J. C., Matrajt, L., Pasetto, D., Perez-Saez, J., Finger,

F., Rinaldo, A., Sugimoto, J. D., Halloran, M. E., Longini, I. M., Ternier, R., Vissieres,

K., Azman, A. S., Lessler, J., and Ivers, L. C. (2020), “Achieving coordinated national

immunity and cholera elimination in Haiti through vaccination: A modelling study,” The

Lancet Global Health, 8, e1081–e1089.

Marino, J. A., Peacor, S. D., Bunnell, D. B., Vanderploeg, H. A., Pothoven, S. A., Elgin,

A. K., Bence, J. R., Jiao, J., and Ionides, E. L. (2019), “Evaluating consumptive and

nonconsumptive predator effects on prey density using field times series data,” Ecology ,

100, e02583.

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003), “Markov chain Monte Carlo

without likelihoods,” Proceedings of the National Academy of Sciences , 100, 15324–

15328.

Martinez-Bakker, M., King, A. A., and Rohani, P. (2015), “Unraveling the transmission

ecology of polio,” PLoS Biology , 13, e1002172.

Michaud, N., de Valpine, P., Turek, D., Paciorek, C. J., and Nguyen, D. (2021), “Sequential

Monte Carlo methods in the nimble and nimbleSMC R packages,” Journal of Statistical

Software, 100, 1–39.

Ning, N., Ionides, E. L., and Ritov, Y. (2021), “Scalable Monte Carlo inference and rescaled

local asymptotic normality,” Bernoulli , 27, 2532–2555.

Ranjeva, S., Subramanian, R., Fang, V. J., Leung, G. M., Ip, D. K., Perera, R. A., Peiris,

J. M., Cowling, B. J., and Cobey, S. (2019), “Age-specific differences in the dynamics of

protective immunity to influenza,” Nature Communications , 10, 1660.

Ranjeva, S. L., Baskerville, E. B., Dukic, V., Villa, L. L., Lazcano-Ponce, E., Giuliano,

A. R., Dwyer, G., and Cobey, S. (2017), “Recurring infection with ecologically dis-

tinct HPV types can explain high prevalence and diversity,” Proceedings of the National

Academy of Sciences of the USA, 114, 13573–13578.

Romero-Severson, E., Volz, E., Koopman, J., Leitner, T., and Ionides, E. (2015), “Dynamic

variation in sexual contact rates in a cohort of HIV-negative gay men,” American Journal

of Epidemiology , 182, 255–262.

22

Sisson, S. A., Fan, Y., and Tanaka, M. M. (2007), “Sequential Monte Carlo without likeli-

hoods,” Proceedings of the National Academy of Sciences , 104, 1760–1765.

Wale, N., Jones, M. J., Sim, D. G., Read, A. F., and King, A. A. (2019), “The contribution

of host cell-directed vs. parasite-directed immunity to the disease and dynamics of malaria

infections,” Proceedings of the National Academy of Sciences , 116, 22386–22392.

Winsor, C. P. (1932), “The Gompertz curve as a growth curve,” Proceedings of the National

Academy of Sciences of the USA, 18, 1–8.

23

